Wolever TM, Miller JB. Sugars and blood glucose management. Am J Clin Nutr. 1995;62(1 Suppl):212S-221S; dialogue 221S-227S. https://doi.org/10.1093/ajcn/62.1.212S
Ritter S. Monitoring and Upkeep of Mind Glucose Provide: Significance of Hindbrain Catecholamine Neurons in This Multifaceted Process. Printed on-line 2017. http://europepmc.org/books/NBK453140
Hantzidiamantis PJ, Lappin SL. Physiology, Glucose. StatPearls Publishing, Treasure Island (FL); 2023. http://europepmc.org/books/NBK545201
Cutshaw, G. et al. The rising function of raman spectroscopy as an omics strategy for metabolic profiling and biomarker detection towards precision drugs. Chem Rev. 123(13), 8297–8346. https://doi.org/10.1021/acs.chemrev.2c00897 (2023).
Hill, I. E. et al. Understanding radiation response and cell cycle variation in mind tumour cells utilizing Raman spectroscopy. Analyst 148(11), 2594–2608. https://doi.org/10.1039/d3an00121k (2023).
Milligan, Ok. et al. Raman spectroscopy and group and basis-restricted non adverse matrix factorisation identifies radiation induced metabolic adjustments in human most cancers cells. Sci Rep. 11(1), 1–11. https://doi.org/10.1038/s41598-021-83343-5 (2021).
Deng, X. et al. Monitor ionizing radiation-induced mobile responses with raman spectroscopy, non-negative matrix factorization, and non-negative least squares. Appl. Spectrosc. 74(6), 701–711. https://doi.org/10.1177/0003702820906221 (2020).
Giri, B. et al. Power hyperglycemia mediated physiological alteration and metabolic distortion results in organ dysfunction, an infection, most cancers development and different pathophysiological penalties: an replace on glucose toxicity. Biomed. Pharmacother. 107, 306–328. https://doi.org/10.1016/j.biopha.2018.07.157 (2018).
Aronson, D. & Rayfield, E. J. How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc. Diabetol. 1(1), 1. https://doi.org/10.1186/1475-2840-1-1 (2002).
Park, C., Pagnini, F. & Langer, E. Glucose metabolism responds to perceived sugar consumption greater than precise sugar consumption. Sci. Rep. 10(1), 1–8. https://doi.org/10.1038/s41598-020-72501-w (2020).
Stanhope, Ok. L. Sugar consumption, metabolic illness and weight problems: the state of the controversy. Crit. Rev. Clin. Lab Sci. 53(1), 52–67. https://doi.org/10.3109/10408363.2015.1084990 (2016).
Pappe, C. L., Peters, B., Dommisch, H., Woelber, J. P. & Pivovarova-Ramich, O. Results of decreasing free sugars on 24-hour glucose profiles and glycemic variability in topics with out diabetes. Entrance. Nutrit. 2(10), 1213661. https://doi.org/10.3389/fnut.2023.1213661 (2023).
Gannon, M. C. & Nuttall, F. Q. Management of blood glucose in kind 2 diabetes with out weight reduction by modification of weight-reduction plan composition. Nutr. Metab. 3, 1–8. https://doi.org/10.1186/1743-7075-3-16 (2006).
Sieri, S. et al. Potential examine on the function of glucose metabolism in breast most cancers prevalence. Int. J. most cancers. 130(4), 921–929. https://doi.org/10.1002/ijc.26071 (2012).
Raza, U., Asif, M. R., Bin, R. A. & Sheikh, A. Hyperlipidemia and hyper glycaemia in Breast Most cancers Sufferers is said to illness stage. Pakistan J. Med. Sci. 34(1), 209–214. https://doi.org/10.12669/pjms.341.14841 (2018).
Contiero, P. et al. Fasting blood glucose and long-term prognosis of non-metastatic breast most cancers: a cohort examine. Breast Most cancers Res. Deal with. 138(3), 951–959. https://doi.org/10.1007/s10549-013-2519-9 (2013).
Aranceta Bartrina, J. & Pérez, R. C. Affiliation between sucrose consumption and most cancers: a assessment of the proof. Nutr. Hosp. 28(Suppl 4), 95–105. https://doi.org/10.3305/nh.2013.28.sup4.6802 (2013).
Malik, V. S., Popkin, B. M., Bray, G. A., Després, J. P. & Hu, F. B. Sugar-sweetened drinks, weight problems, kind 2 diabetes mellitus, and heart problems danger. Circulation 121(11), 1356–1364. https://doi.org/10.1161/CIRCULATIONAHA.109.876185 (2010).
Riise, H. Ok. R. et al. Informal blood glucose and subsequent heart problems and all-cause mortality amongst 159 731 contributors in Cohort of Norway (CONOR). BMJ Open Diabetes Res. Care https://doi.org/10.1136/bmjdrc-2020-001928 (2021).
Wittig, R. & Coy, J. F. The function of glucose metabolism and glucose-associated signalling in most cancers. Perspect Medicin Chem. 1, 11773910700100006. https://doi.org/10.1177/1177391X0700100006 (2007).
Sieri, S. et al. Potential examine on the function of glucose metabolism in breast most cancers prevalence. Int J. Most cancers. 130(4), 921–929. https://doi.org/10.1002/ijc.26071 (2012).
Poursaitidis I, Lamb RF. Metabolism in pancreatic most cancers. Pancreat Most cancers. Printed on-line 2018:1379–1400. https://doi.org/10.1007/978-1-4939-7193-0_68
Kellenberger, L. D. et al. The function of dysregulated glucose metabolism in epithelial ovarian most cancers. J. Oncol. 2010(1), 514310. https://doi.org/10.1155/2010/514310 (2010).
Cutruzzolà, F. et al. Glucose metabolism within the development of prostate most cancers. Entrance. Physiol. https://doi.org/10.3389/fphys.2017.00097 (2017).
Cai, X. J. et al. Rising function of excessive glucose ranges in most cancers development and remedy. Chin. J. Dent. Res. 25(1), 11–20. https://doi.org/10.3290/j.cjdr.b2752695 (2022).
Zhan, Y.-S. et al. Glucose metabolism problems in most cancers sufferers in a Chinese language inhabitants. Med. Oncol. 27(2), 177–184. https://doi.org/10.1007/s12032-009-9189-9 (2010).
Luo, J., Chen, Y.-J. & Chang, L.-J. Fasting blood glucose stage and prognosis in non-small cell lung most cancers (NSCLC) sufferers. Lung Most cancers. 76(2), 242–247. https://doi.org/10.1016/j.lungcan.2011.10.019 (2012).
Stewart, Ok. L. et al. Affiliation of sugar consumption with inflammation- and angiogenesis-related biomarkers in newly recognized colorectal most cancers sufferers. Nutr Most cancers. 74(5), 1636–1643. https://doi.org/10.1080/01635581.2021.1957133 (2022).
McCullough, M. L., Hodge, R. A., Campbell, P. T., Guinter, M. A. & Patel, A. V. Sugar- and artificially-sweetened drinks and most cancers mortality in a big US potential cohort. Most cancers Epidemiol. Biomark. Prev a Publ. Am. Assoc. Most cancers Res. Cosponsored Am. Soc. Prev. Oncol. 31(10), 1907–1918. https://doi.org/10.1158/1055-9965.EPI-22-0392 (2022).
Debras, C. et al. Complete and added sugar intakes, sugar varieties, and most cancers danger: Outcomes from the potential NutriNet-Santé cohort. Am. J. Clin. Nutr. 112(5), 1267–1279. https://doi.org/10.1093/ajcn/nqaa246 (2020).
Laguna, J. C. et al. Easy sugar consumption and most cancers incidence, most cancers mortality and all-cause mortality: a cohort examine from the PREDIMED trial. Clin. Nutr. 40(10), 5269–5277. https://doi.org/10.1016/j.clnu.2021.07.031 (2021).
Epner, M., Yang, P., Wagner, R. W. & Cohen, L. Understanding the hyperlink between sugar and most cancers: an examination of the preclinical and medical proof. Cancers (Basel) https://doi.org/10.3390/cancers14246042 (2022).
Solar, S., Solar, Y., Rong, X. & Bai, L. Excessive glucose promotes breast most cancers proliferation and metastasis by impairing angiotensinogen expression. Biosci. Rep. https://doi.org/10.1042/BSR20190436 (2019).
Liao, W.-C. et al. Blood glucose focus and danger of pancreatic most cancers: systematic assessment and dose-response meta-analysis. BMJ 350, g7371. https://doi.org/10.1136/bmj.g7371 (2015).
Gapstur, S. M. et al. Irregular glucose metabolism and pancreatic most cancers mortality. JAMA 283(19), 2552–2558. https://doi.org/10.1001/jama.283.19.2552 (2000).
Bielecka-Wajdman, A. M. et al. Glucose influences the response of glioblastoma cells to temozolomide and dexamethasone. Most cancers Management. 29, 10732748221075468. https://doi.org/10.1177/10732748221075468 (2022).
Onikanni, S. A. et al. Most cancers of the liver and its relationship with diabetes mellitus. Technol Most cancers Res. Deal with. 21, 15330338221119744. https://doi.org/10.1177/15330338221119743 (2022).
Sripetchwandee, J., Chattipakorn, N. & Chattipakorn, S. C. Hyperlinks between obesity-induced mind insulin resistance, mind mitochondrial dysfunction, and dementia. Entrance. Endocrinol. (Lausanne) 9, 1–16. https://doi.org/10.3389/fendo.2018.00496 (2018).
Himsworth, H. P. The syndrome of diabetes mellitus and its causes. Lancet 253(6551), 465–473. https://doi.org/10.1016/S0140-6736(49)90797-7 (1949).
Kumar, V., Kim, S.-H. & Bishayee, Ok. Dysfunctional glucose metabolism in Alzheimer’s illness onset and potential pharmacological interventions. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23179540 (2022).
Liu, J. et al. Mind glucose activated mri distinction agent for early analysis of Alzheimer’s illness. Anal. Chem. 94(46), 16213–16221. https://doi.org/10.1021/acs.analchem.2c03765 (2022).
Dewanjee, S. et al. Altered glucose metabolism in Alzheimer’s illness: function of mitochondrial dysfunction and oxidative stress. Free Radic Biol Med. 193, 134–157. https://doi.org/10.1016/j.freeradbiomed.2022.09.032 (2022).
Duran-Aniotz, C. & Hetz, C. Glucose metabolism: a candy reduction of ALZHEIMER’S illness. Curr Biol. 26(17), R806–R809. https://doi.org/10.1016/j.cub.2016.07.060 (2016).
Yoon, J. H. et al. How can insulin resistance trigger alzheimer’s illness?. Int. J. Mol. Sci. https://doi.org/10.3390/ijms24043506 (2023).
Williamson, R., McNeilly, A. & Sutherland, C. Insulin resistance within the mind: an old-age or new-age drawback?. Biochem. Pharmacol. 84(6), 737–745. https://doi.org/10.1016/j.bcp.2012.05.007 (2012).
Huang, C.-C. et al. Diabetes mellitus and the chance of Alzheimer’s illness: a nationwide population-based examine. PLoS ONE 9(1), e87095. https://doi.org/10.1371/journal.pone.0087095 (2014).
Kim, E. J. et al. Glucose metabolism in early onset versus late onset Alzheimer’s illness: an SPM evaluation of 120 sufferers. Mind 128(8), 1790–1801. https://doi.org/10.1093/mind/awh539 (2005).
Hammond, T. C. & Lin, A.-L. Glucose metabolism is a greater marker for predicting medical alzheimer’s illness than amyloid or tau. J. Cell Immunol. 4(1), 15–18 (2022).
Zhang, X. et al. Midlife lipid and glucose ranges are related to Alzheimer’s illness. Alzheimer’s Dement. 19(1), 181–193. https://doi.org/10.1002/alz.12641 (2023).
Barhwal, Ok., Das, S. Ok., Kumar, A., Hota, S. Ok. & Srivastava, R. B. Insulin receptor A and Sirtuin 1 synergistically enhance studying and spatial reminiscence following continual salidroside remedy throughout hypoxia. J. Neurochem. 135(2), 332–346. https://doi.org/10.1111/jnc.13225 (2015).
Beirami, E., Oryan, S., Seyedhosseini Tamijani, S. M., Ahmadiani, A. & Dargahi, L. Intranasal insulin remedy restores cognitive deficits and insulin signaling impairment induced by repeated methamphetamine publicity. J. Cell Biochem. 119(2), 2345–2355. https://doi.org/10.1002/jcb.26398 (2018).
Pratchayasakul, W. et al. Results of high-fat weight-reduction plan on insulin receptor operate in rat hippocampus and the extent of neuronal corticosterone. Life Sci. 88(13–14), 619–627. https://doi.org/10.1016/j.lfs.2011.02.003 (2011).
Pipatpiboon, N., Pratchayasakul, W., Chattipakorn, N. & Chattipakorn, S. C. PPARγ agonist improves neuronal insulin receptor operate in hippocampus and mind mitochondria operate in rats with insulin resistance induced by long run high-fat diets. Endocrinology 153(1), 329–338. https://doi.org/10.1210/en.2011-1502 (2012).
Pintana, H., Apaijai, N., Pratchayasakul, W., Chattipakorn, N. & Chattipakorn, S. C. Results of metformin on studying and reminiscence behaviors and mind mitochondrial capabilities in excessive fats weight-reduction plan induced insulin resistant rats. Life Sci. 91(11–12), 409–414. https://doi.org/10.1016/j.lfs.2012.08.017 (2012).
Kopeć, M., Beton, Ok. & Jarczewska, Ok. A. H. Hyperglycemia and most cancers in human lung carcinoma via Raman spectroscopy and imaging. Sci. Rep. 12, 18561. https://doi.org/10.1038/s41598-022-21483-y (2022).
Kopec, M. & Beton-Mysur, Ok. The function of glucose and fructose on lipid droplet metabolism in human regular bronchial and most cancers lung cells by Raman spectroscopy. Chem. Phys. Lipids 2023(259), 105375. https://doi.org/10.1016/j.chemphyslip.2023.105375 (2023).
Kopeć, M., Beton-Mysur, Ok. & Abramczyk, H. Biochemical adjustments in lipid and protein metabolism brought on by mannose-Raman spectroscopy research. Analyst https://doi.org/10.1039/d4an00128a (2024).
Halina, A. & Beata Brozek-Pluska, M. Ok. Double face of cytochrome c in cancers by Raman imaging. Sci. Rep. https://doi.org/10.1038/s41598-022-04803-0 (2022).
Beton-Mysur, Ok. & Brożek-Płuska, B. A brand new modality for ldl cholesterol influence monitoring in colon most cancers improvement – Raman imaging, fluorescence and AFM research mixed with chemometric evaluation. Anal. Strategies 15(39), 5199–5217. https://doi.org/10.1039/d3ay01040f (2023).
Kopec, M., Beton-Mysur, Ok. & Abramczyk, H. Raman imaging and chemometric strategies in human regular bronchial and most cancers lung cells: Raman biomarkers of lipid reprogramming. Chem. Phys. Lipids. 257(July), 105339. https://doi.org/10.1016/j.chemphyslip.2023.105339 (2023).
Brozek-Pluska, B. Statistics assisted evaluation of Raman spectra and imaging of human colon cell traces – Label free, spectroscopic diagnostics of colorectal most cancers. J. Mol. Struct. 1218, 128524. https://doi.org/10.1016/j.molstruc.2020.128524 (2020).
Movasaghi, Z., Rehman, S. & Rehman, I. U. Raman spectroscopy of organic tissues. Appl. Spectrosc. Rev. 42(5), 493–541. https://doi.org/10.1080/05704920701551530 (2007).
Sciences N, Chemistry A, Centre I, Kingdom U. BBA – M olecular Cell Analysis Raman microscopy reveals how cell irritation prompts glucose and lipid metabolism A lek sa n d ra B o re okay -D o ro s z a , A n n a P ie c za ra b , c , J a go d a O rle a n s okay a a , c , Ok r z y s z to f B r z o z o w s . 2023;(August).
Ralhan, I., Chang, C.-L., Lippincott-Schwartz, J. & Ioannou, M. S. Lipid droplets within the nervous system. J. Cell Biol. https://doi.org/10.1083/jcb.202102136 (2021).
Zhao, X., Zhang, S., Sanders, A. R. & Duan, J. Mind lipids and lipid droplet dysregulation in alzheimer’s illness and neuropsychiatric problems. Advanced Psych. 9(1–4), 154–171. https://doi.org/10.1159/000535131 (2023).
Seyfried, T. N. et al. Metabolic administration of mind most cancers. Biochim. Biophys. Acta – Bioenerg. 1807(6), 577–594. https://doi.org/10.1016/j.bbabio.2010.08.009 (2011).
Abramczyk H, Surmacki JM, Brozek-Pluska B, Kopec M. Revision of Generally Accepted Warburg Mechanism of Most cancers Improvement : Redox-Delicate Mitochondrial Cytochromes in Breast and Mind Cancers by Raman Imaging. Cancers (Basel). Printed on-line 2021.
Xu, S., Zhang, X. & Liu, P. Lipid droplet proteins and metabolic ailments. Biochim. Biophys. Acta – Mol Foundation Dis. 1864(5), 1968–1983. https://doi.org/10.1016/j.bbadis.2017.07.019 (2018).
DiNicolantonio, J. J., O’Keefe, J. H. & Wilson, W. L. Sugar dependancy: is it actual? A story assessment. Br. J. Sports activities Med. 52(14), 910–913. https://doi.org/10.1136/bjsports-2017-097971 (2018).

