α-lipoic acid modulates prostate most cancers cell progress and bone cell differentiation


  • Siegel, R. L., Miller, Ok. D., Wagle, N. S. & Jemal, A. Most cancers statistics, 2023. CA Most cancers J. Clin. 73, 17–48. https://doi.org/10.3322/caac.21763 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Sung, H. et al. International most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Most cancers J. Clin. 71, 209–249. https://doi.org/10.3322/caac.21660 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Sartor, O. & de Bono, J. S. Metastatic prostate most cancers. N. Engl. J. Med. 378, 645–657. https://doi.org/10.1056/NEJMra1701695 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma, G. et al. Epigenetic regulation of bone transforming and bone metastasis. Semin. Cell Dev. Biol. https://doi.org/10.1016/j.semcdb.2022.11.002 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Randall, R. L. A promise to our sufferers with metastatic bone illness. Ann. Surg. Oncol. 21, 4049–4050. https://doi.org/10.1245/s10434-014-4010-1 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Nieder, C., Haukland, E., Pawinski, A. & Dalhaug, A. Anaemia and thrombocytopenia in sufferers with prostate most cancers and bone metastases. BMC Most cancers 10, 284. https://doi.org/10.1186/1471-2407-10-284 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bubendorf, L. et al. Metastatic patterns of prostate most cancers: An post-mortem research of 1,589 sufferers. Hum. Pathol. 31, 578–583. https://doi.org/10.1053/hp.2000.6698 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheung, F. Y. Revisiting the position of bone-modifying brokers within the administration of metastatic prostate most cancers. Asia Pac. J. Clin. Oncol. 14(Suppl 5), 13–15. https://doi.org/10.1111/ajco.13061 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Roberts, J. L. & Moreau, R. Rising position of alpha-lipoic acid within the prevention and remedy of bone loss. Nutr. Rev. 73, 116–125. https://doi.org/10.1093/nutrit/nuu005 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Herbert, A. A. & Visitor, J. R. Lipoic acid content material of Escherichia coli and different microorganisms. Arch. Microbiol. 106, 259–266. https://doi.org/10.1007/BF00446532 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shay, Ok. P., Moreau, R. F., Smith, E. J., Smith, A. R. & Hagen, T. M. Alpha-lipoic acid as a dietary complement: Molecular mechanisms and therapeutic potential. Biochim. Biophys. Acta 1790, 1149–1160. https://doi.org/10.1016/j.bbagen.2009.07.026 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salehi, B. et al. Insights on the usage of alpha-lipoic acid for therapeutic functions. Biomolecules https://doi.org/10.3390/biom9080356 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dorsam, B., Goder, A., Seiwert, N., Kaina, B. & Fahrer, J. Lipoic acid induces p53-independent cell loss of life in colorectal most cancers cells and potentiates the cytotoxicity of 5-fluorouracil. Arch. Toxicol. 89, 1829–1846. https://doi.org/10.1007/s00204-014-1434-0 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kafara, P., Icard, P., Guillamin, M., Schwartz, L. & Lincet, H. Lipoic acid decreases Mcl-1, Bcl-xL and up regulates Bim on ovarian carcinoma cells resulting in cell loss of life. J. Ovarian Res. 8, 36. https://doi.org/10.1186/s13048-015-0165-z (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuban-Jankowska, A., Gorska-Ponikowska, M. & Wozniak, M. Lipoic acid decreases the viability of breast most cancers cells and exercise of PTP1B and SHP2. Anticancer Res. 37, 2893–2898. https://doi.org/10.21873/anticanres.11642 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Puchsaka, P., Chaotham, C. & Chanvorachote, P. alpha-Lipoic acid sensitizes lung most cancers cells to chemotherapeutic brokers and anoikis by way of integrin beta1/beta3 downregulation. Int. J. Oncol. 49, 1445–1456. https://doi.org/10.3892/ijo.2016.3624 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, L. et al. alpha-Lipoic acid inhibits human lung most cancers cell proliferation by way of Grb2-mediated EGFR downregulation. Biochem. Biophys. Res. Commun. 494, 325–331. https://doi.org/10.1016/j.bbrc.2017.10.030 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chakravarti, B. et al. Lipoic acid blocks autophagic flux and impairs mobile bioenergetics in breast most cancers and reduces stemness. Biochim. Biophys. Acta Mol. Foundation Dis. 1868, 166455. https://doi.org/10.1016/j.bbadis.2022.166455 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Awsi, G. R. L. et al. The chemoprotective potentials of alpha-lipoic acid in opposition to cisplatin-induced ototoxicity: A scientific assessment. Curr. Med. Chem. https://doi.org/10.2174/0929867330666230509162513 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Skibska, B., Kochan, E., Stanczak, A., Lipert, A. & Skibska, A. Antioxidant and anti inflammatory results of alpha-lipoic acid on lipopolysaccharide-induced oxidative stress in rat kidney. Arch. Immunol. Ther. Exp. 71, 16. https://doi.org/10.1007/s00005-023-00682-z (2023).

    Article 
    CAS 

    Google Scholar
     

  • Brillo, V., Chieregato, L., Leanza, L., Muccioli, S. & Costa, R. Mitochondrial dynamics, ROS, and cell signaling: A blended overview. Life https://doi.org/10.3390/life11040332 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, R. et al. Garcinone E triggers apoptosis and cell cycle arrest in human colorectal most cancers cells by mediating a reactive oxygen species-dependent JNK signaling pathway. Biomed. Pharmacother. 162, 114617. https://doi.org/10.1016/j.biopha.2023.114617 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Paclitax-+el induces the apoptosis of prostate most cancers cells by way of ROS-mediated HIF-1alpha expression. Molecules https://doi.org/10.3390/molecules27217183 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wenzel, U., Nickel, A. & Daniel, H. alpha-Lipoic acid induces apoptosis in human colon most cancers cells by rising mitochondrial respiration with a concomitant O2-*-generation. Apoptosis 10, 359–368. https://doi.org/10.1007/s10495-005-0810-x (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mimeault, M. et al. Inhibition of hedgehog signaling improves the anti-carcinogenic results of docetaxel in prostate most cancers. Oncotarget 6, 3887–3903. https://doi.org/10.18632/oncotarget.2932 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Senapati, S. et al. Overexpression of macrophage inhibitory cytokine-1 induces metastasis of human prostate most cancers cells by way of the FAK-RhoA signaling pathway. Oncogene 29, 1293–1302. https://doi.org/10.1038/onc.2009.420 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaudhary, S., Madhukrishna, B., Adhya, A. Ok., Keshari, S. & Mishra, S. Ok. Overexpression of caspase 7 is ERalpha dependent to have an effect on proliferation and cell progress in breast most cancers cells by focusing on p21(Cip). Oncogenesis 5, e219. https://doi.org/10.1038/oncsis.2016.12 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, P. et al. MicroRNA-1 attenuates the expansion and metastasis of small cell lung most cancers by way of CXCR4/FOXM1/RRM2 axis. Mol. Most cancers 22, 1. https://doi.org/10.1186/s12943-022-01695-6 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhatia, R. et al. Malondialdehyde-acetaldehyde extracellular matrix protein adducts attenuate unfolded protein response throughout alcohol and smoking-induced pancreatitis. Gastroenterology 163, 1064-1078.e1010. https://doi.org/10.1053/j.gastro.2022.06.071 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pothuraju, R. et al. Molecular implications of MUC5AC-CD44 axis in colorectal most cancers development and chemoresistance. Mol. Most cancers 19, 37. https://doi.org/10.1186/s12943-020-01156-y (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pothuraju, R. et al. Depletion of transmembrane mucin 4 (Muc4) alters intestinal homeostasis in a genetically engineered mouse mannequin of colorectal most cancers. Getting older 14, 2025–2046. https://doi.org/10.18632/growing old.203935 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siddiqui, J. A. et al. GDF15 promotes prostate most cancers bone metastasis and colonization by way of osteoblastic CCL2 and RANKL activation. Bone Res. 10, 6. https://doi.org/10.1038/s41413-021-00178-6 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siddiqui, J. A. et al. Catabolic results of human PTH (1–34) on bone: Requirement of monocyte chemoattractant protein-1 in murine mannequin of hyperparathyroidism. Sci. Rep. 7, 15300. https://doi.org/10.1038/s41598-017-15563-7 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biosse Duplan, M. et al. Microtubule dynamic instability controls podosome patterning in osteoclasts by way of EB1, cortactin, and Src. Mol. Cell Biol. 34, 16–29. https://doi.org/10.1128/MCB.00578-13 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trivedi, R. et al. Kaempferol has osteogenic impact in ovariectomized grownup Sprague–Dawley rats. Mol. Cell Endocrinol. 289, 85–93. https://doi.org/10.1016/j.mce.2008.02.027 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simbula, G. et al. Elevated ROS technology and p53 activation in alpha-lipoic acid-induced apoptosis of hepatoma cells. Apoptosis 12, 113–123. https://doi.org/10.1007/s10495-006-0487-9 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kluck, R. M., Bossy-Wetzel, E., Inexperienced, D. R. & Newmeyer, D. D. The discharge of cytochrome c from mitochondria: A main website for Bcl-2 regulation of apoptosis. Science 275, 1132–1136. https://doi.org/10.1126/science.275.5303.1132 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Reest, J., Lilla, S., Zheng, L., Zanivan, S. & Gottlieb, E. Proteome-wide evaluation of cysteine oxidation reveals metabolic sensitivity to redox stress. Nat. Commun. 9, 1581. https://doi.org/10.1038/s41467-018-04003-3 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aruoma, O. I., Halliwell, B., Hoey, B. M. & Butler, J. The antioxidant motion of N-acetylcysteine: its response with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic. Biol. Med. 6, 593–597. https://doi.org/10.1016/0891-5849(89)90066-x (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, Y. H. & Park, W. H. The results of MAPK inhibitors on a proteasome inhibitor, MG132-induced HeLa cell loss of life in relation to reactive oxygen species and glutathione. Toxicol. Lett. 192, 134–140. https://doi.org/10.1016/j.toxlet.2009.10.015 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dongre, A. & Weinberg, R. A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for most cancers. Nat. Rev. Mol. Cell Biol. 20, 69–84. https://doi.org/10.1038/s41580-018-0080-4 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y. et al. miR-196b-5p regulates osteoblast and osteoclast differentiation and bone homeostasis by focusing on SEMA3A. J. Bone Miner. Res. https://doi.org/10.1002/jbmr.4834 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Henry, M. D. et al. Spiculated periosteal response induced by intraosseous injection of 22Rv1 prostate most cancers cells resembles subset of bone metastases in prostate most cancers sufferers. Prostate 65, 347–354. https://doi.org/10.1002/professionals.20300 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, H. J. et al. Antioxidant alpha-lipoic acid inhibits osteoclast differentiation by lowering nuclear factor-kappaB DNA binding and prevents in vivo bone resorption induced by receptor activator of nuclear factor-kappaB ligand and tumor necrosis factor-alpha. Free Radic. Biol. Med. 40, 1483–1493. https://doi.org/10.1016/j.freeradbiomed.2005.10.066 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dorsam, B. & Fahrer, J. The disulfide compound alpha-lipoic acid and its derivatives: A novel class of anti-cancer brokers focusing on mitochondria. Most cancers Lett. 371, 12–19. https://doi.org/10.1016/j.canlet.2015.11.019 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farhat, D. et al. Lipoic acid-induced oxidative stress abrogates IGF-1R maturation by inhibiting the CREB/furin axis in breast most cancers cell strains. Oncogene 39, 3604–3610. https://doi.org/10.1038/s41388-020-1211-x (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tibullo, D. et al. Biochemical and medical relevance of alpha lipoic acid: antioxidant and anti inflammatory exercise, molecular pathways and therapeutic potential. Inflamm. Res. 66, 947–959. https://doi.org/10.1007/s00011-017-1079-6 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Damaschke, N. A., Yang, B., Bhusari, S., Svaren, J. P. & Jarrard, D. F. Epigenetic susceptibility elements for prostate most cancers with growing old. Prostate 73, 1721–1730. https://doi.org/10.1002/professionals.22716 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • D’Arcy, M. S. Cell loss of life: A assessment of the foremost types of apoptosis, necrosis and autophagy. Cell Biol. Int. 43, 582–592. https://doi.org/10.1002/cbin.11137 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Khan, S. et al. 4-Chloro-orthophenylenediamine alters DNA integrity and impacts cell survival: Inferences from a computational, biophysical/biochemical, microscopic and cell-based research. J. Biomol. Struct. Dyn. 40, 14176–14187. https://doi.org/10.1080/07391102.2021.2001376 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moloney, J. N. & Cotter, T. G. ROS signalling within the biology of most cancers. Semin. Cell Dev. Biol. 80, 50–64. https://doi.org/10.1016/j.semcdb.2017.05.023 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sabharwal, S. S. & Schumacker, P. T. Mitochondrial ROS in most cancers: Initiators, amplifiers or an Achilles’ heel?. Nat. Rev. Most cancers 14, 709–721. https://doi.org/10.1038/nrc3803 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dozio, E. et al. The pure antioxidant alpha-lipoic acid induces p27(Kip1)-dependent cell cycle arrest and apoptosis in MCF-7 human breast most cancers cells. Eur. J. Pharmacol. 641, 29–34. https://doi.org/10.1016/j.ejphar.2010.05.009 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farhat, D. et al. Lipoic acid decreases breast most cancers cell proliferation by inhibiting IGF-1R by way of furin downregulation. Br. J. Most cancers 122, 885–894. https://doi.org/10.1038/s41416-020-0729-6 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farhat, D. & Lincet, H. Lipoic acid a multi-level molecular inhibitor of tumorigenesis. Biochim. Biophys. Acta Rev. Most cancers 1873, 188317. https://doi.org/10.1016/j.bbcan.2019.188317 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tseng, J. C. et al. CAPE suppresses migration and invasion of prostate most cancers cells by way of activation of non-canonical Wnt signaling. Oncotarget 7, 38010–38024. https://doi.org/10.18632/oncotarget.9380 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reczek, C. R. et al. A CRISPR display identifies a pathway required for paraquat-induced cell loss of life. Nat. Chem. Biol. 13, 1274–1279. https://doi.org/10.1038/nchembio.2499 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, H. et al. Chemotherapy triggers HIF-1-dependent glutathione synthesis and copper chelation that induces the breast most cancers stem cell phenotype. Proc. Natl. Acad. Sci. USA 112, E4600-4609. https://doi.org/10.1073/pnas.1513433112 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semenza, G. L. HIF-1 and mechanisms of hypoxia sensing. Curr. Opin. Cell Biol. 13, 167–171. https://doi.org/10.1016/s0955-0674(00)00194-0 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Semenza, G. L. Hypoxia-inducible elements in physiology and medication. Cell 148, 399–408. https://doi.org/10.1016/j.cell.2012.01.021 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soengas, M. S. et al. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284, 156–159. https://doi.org/10.1126/science.284.5411.156 (1999).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Madan, E. et al. HIF-transcribed p53 chaperones HIF-1alpha. Nucleic Acids Res. 47, 10212–10234. https://doi.org/10.1093/nar/gkz766 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ray, R. et al. BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell loss of life impartial of a Bcl-2 homology 3 (BH3) area at each mitochondrial and nonmitochondrial websites. J. Biol. Chem. 275, 1439–1448. https://doi.org/10.1074/jbc.275.2.1439 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sottnik, J. L. & Keller, E. T. Understanding and focusing on osteoclastic exercise in prostate most cancers bone metastases. Curr. Mol. Med. 13, 626–639. https://doi.org/10.2174/1566524011313040012 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, Y. et al. Dyslipidemic high-fat eating regimen impacts adversely bone metabolism in mice related to impaired antioxidant capability. Diet 27, 214–220. https://doi.org/10.1016/j.nut.2009.11.012 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, Y., Cui, J., Shi, Y. & Le, G. Lipoic acid will increase the expression of genes concerned in bone formation in mice fed a high-fat eating regimen. Nutr. Res. 31, 309–317. https://doi.org/10.1016/j.nutres.2011.03.013 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ignatoski, Ok. M. et al. Change in markers of bone metabolism with chemotherapy for superior prostate most cancers: Interleukin-6 response is a possible early indicator of response to remedy. J. Interferon Cytokine Res. 29, 105–112. https://doi.org/10.1089/jir.2008.0024 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roato, I. et al. Osteoclasts are energetic in bone forming metastases of prostate most cancers sufferers. PLoS ONE 3, e3627. https://doi.org/10.1371/journal.pone.0003627 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stegen, S. et al. HIF-1alpha promotes glutamine-mediated redox homeostasis and glycogen-dependent bioenergetics to help put up implantation bone cell survival. Cell Metab. 23, 265–279. https://doi.org/10.1016/j.cmet.2016.01.002 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Q. et al. JNK signaling in most cancers cell survival. Med. Res. Rev. 39, 2082–2104. https://doi.org/10.1002/med.21574 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hot Topics

    Related Articles