Siegel, R. L., Miller, Ok. D., Wagle, N. S. & Jemal, A. Most cancers statistics, 2023. CA Most cancers J. Clin. 73, 17–48. https://doi.org/10.3322/caac.21763 (2023).
Sung, H. et al. International most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Most cancers J. Clin. 71, 209–249. https://doi.org/10.3322/caac.21660 (2021).
Sartor, O. & de Bono, J. S. Metastatic prostate most cancers. N. Engl. J. Med. 378, 645–657. https://doi.org/10.1056/NEJMra1701695 (2018).
Sharma, G. et al. Epigenetic regulation of bone transforming and bone metastasis. Semin. Cell Dev. Biol. https://doi.org/10.1016/j.semcdb.2022.11.002 (2022).
Randall, R. L. A promise to our sufferers with metastatic bone illness. Ann. Surg. Oncol. 21, 4049–4050. https://doi.org/10.1245/s10434-014-4010-1 (2014).
Nieder, C., Haukland, E., Pawinski, A. & Dalhaug, A. Anaemia and thrombocytopenia in sufferers with prostate most cancers and bone metastases. BMC Most cancers 10, 284. https://doi.org/10.1186/1471-2407-10-284 (2010).
Bubendorf, L. et al. Metastatic patterns of prostate most cancers: An post-mortem research of 1,589 sufferers. Hum. Pathol. 31, 578–583. https://doi.org/10.1053/hp.2000.6698 (2000).
Cheung, F. Y. Revisiting the position of bone-modifying brokers within the administration of metastatic prostate most cancers. Asia Pac. J. Clin. Oncol. 14(Suppl 5), 13–15. https://doi.org/10.1111/ajco.13061 (2018).
Roberts, J. L. & Moreau, R. Rising position of alpha-lipoic acid within the prevention and remedy of bone loss. Nutr. Rev. 73, 116–125. https://doi.org/10.1093/nutrit/nuu005 (2015).
Herbert, A. A. & Visitor, J. R. Lipoic acid content material of Escherichia coli and different microorganisms. Arch. Microbiol. 106, 259–266. https://doi.org/10.1007/BF00446532 (1975).
Shay, Ok. P., Moreau, R. F., Smith, E. J., Smith, A. R. & Hagen, T. M. Alpha-lipoic acid as a dietary complement: Molecular mechanisms and therapeutic potential. Biochim. Biophys. Acta 1790, 1149–1160. https://doi.org/10.1016/j.bbagen.2009.07.026 (2009).
Salehi, B. et al. Insights on the usage of alpha-lipoic acid for therapeutic functions. Biomolecules https://doi.org/10.3390/biom9080356 (2019).
Dorsam, B., Goder, A., Seiwert, N., Kaina, B. & Fahrer, J. Lipoic acid induces p53-independent cell loss of life in colorectal most cancers cells and potentiates the cytotoxicity of 5-fluorouracil. Arch. Toxicol. 89, 1829–1846. https://doi.org/10.1007/s00204-014-1434-0 (2015).
Kafara, P., Icard, P., Guillamin, M., Schwartz, L. & Lincet, H. Lipoic acid decreases Mcl-1, Bcl-xL and up regulates Bim on ovarian carcinoma cells resulting in cell loss of life. J. Ovarian Res. 8, 36. https://doi.org/10.1186/s13048-015-0165-z (2015).
Kuban-Jankowska, A., Gorska-Ponikowska, M. & Wozniak, M. Lipoic acid decreases the viability of breast most cancers cells and exercise of PTP1B and SHP2. Anticancer Res. 37, 2893–2898. https://doi.org/10.21873/anticanres.11642 (2017).
Puchsaka, P., Chaotham, C. & Chanvorachote, P. alpha-Lipoic acid sensitizes lung most cancers cells to chemotherapeutic brokers and anoikis by way of integrin beta1/beta3 downregulation. Int. J. Oncol. 49, 1445–1456. https://doi.org/10.3892/ijo.2016.3624 (2016).
Yang, L. et al. alpha-Lipoic acid inhibits human lung most cancers cell proliferation by way of Grb2-mediated EGFR downregulation. Biochem. Biophys. Res. Commun. 494, 325–331. https://doi.org/10.1016/j.bbrc.2017.10.030 (2017).
Chakravarti, B. et al. Lipoic acid blocks autophagic flux and impairs mobile bioenergetics in breast most cancers and reduces stemness. Biochim. Biophys. Acta Mol. Foundation Dis. 1868, 166455. https://doi.org/10.1016/j.bbadis.2022.166455 (2022).
Al-Awsi, G. R. L. et al. The chemoprotective potentials of alpha-lipoic acid in opposition to cisplatin-induced ototoxicity: A scientific assessment. Curr. Med. Chem. https://doi.org/10.2174/0929867330666230509162513 (2023).
Skibska, B., Kochan, E., Stanczak, A., Lipert, A. & Skibska, A. Antioxidant and anti inflammatory results of alpha-lipoic acid on lipopolysaccharide-induced oxidative stress in rat kidney. Arch. Immunol. Ther. Exp. 71, 16. https://doi.org/10.1007/s00005-023-00682-z (2023).
Brillo, V., Chieregato, L., Leanza, L., Muccioli, S. & Costa, R. Mitochondrial dynamics, ROS, and cell signaling: A blended overview. Life https://doi.org/10.3390/life11040332 (2021).
Li, R. et al. Garcinone E triggers apoptosis and cell cycle arrest in human colorectal most cancers cells by mediating a reactive oxygen species-dependent JNK signaling pathway. Biomed. Pharmacother. 162, 114617. https://doi.org/10.1016/j.biopha.2023.114617 (2023).
Zhang, Y. et al. Paclitax-+el induces the apoptosis of prostate most cancers cells by way of ROS-mediated HIF-1alpha expression. Molecules https://doi.org/10.3390/molecules27217183 (2022).
Wenzel, U., Nickel, A. & Daniel, H. alpha-Lipoic acid induces apoptosis in human colon most cancers cells by rising mitochondrial respiration with a concomitant O2-*-generation. Apoptosis 10, 359–368. https://doi.org/10.1007/s10495-005-0810-x (2005).
Mimeault, M. et al. Inhibition of hedgehog signaling improves the anti-carcinogenic results of docetaxel in prostate most cancers. Oncotarget 6, 3887–3903. https://doi.org/10.18632/oncotarget.2932 (2015).
Senapati, S. et al. Overexpression of macrophage inhibitory cytokine-1 induces metastasis of human prostate most cancers cells by way of the FAK-RhoA signaling pathway. Oncogene 29, 1293–1302. https://doi.org/10.1038/onc.2009.420 (2010).
Chaudhary, S., Madhukrishna, B., Adhya, A. Ok., Keshari, S. & Mishra, S. Ok. Overexpression of caspase 7 is ERalpha dependent to have an effect on proliferation and cell progress in breast most cancers cells by focusing on p21(Cip). Oncogenesis 5, e219. https://doi.org/10.1038/oncsis.2016.12 (2016).
Khan, P. et al. MicroRNA-1 attenuates the expansion and metastasis of small cell lung most cancers by way of CXCR4/FOXM1/RRM2 axis. Mol. Most cancers 22, 1. https://doi.org/10.1186/s12943-022-01695-6 (2023).
Bhatia, R. et al. Malondialdehyde-acetaldehyde extracellular matrix protein adducts attenuate unfolded protein response throughout alcohol and smoking-induced pancreatitis. Gastroenterology 163, 1064-1078.e1010. https://doi.org/10.1053/j.gastro.2022.06.071 (2022).
Pothuraju, R. et al. Molecular implications of MUC5AC-CD44 axis in colorectal most cancers development and chemoresistance. Mol. Most cancers 19, 37. https://doi.org/10.1186/s12943-020-01156-y (2020).
Pothuraju, R. et al. Depletion of transmembrane mucin 4 (Muc4) alters intestinal homeostasis in a genetically engineered mouse mannequin of colorectal most cancers. Getting older 14, 2025–2046. https://doi.org/10.18632/growing old.203935 (2022).
Siddiqui, J. A. et al. GDF15 promotes prostate most cancers bone metastasis and colonization by way of osteoblastic CCL2 and RANKL activation. Bone Res. 10, 6. https://doi.org/10.1038/s41413-021-00178-6 (2022).
Siddiqui, J. A. et al. Catabolic results of human PTH (1–34) on bone: Requirement of monocyte chemoattractant protein-1 in murine mannequin of hyperparathyroidism. Sci. Rep. 7, 15300. https://doi.org/10.1038/s41598-017-15563-7 (2017).
Biosse Duplan, M. et al. Microtubule dynamic instability controls podosome patterning in osteoclasts by way of EB1, cortactin, and Src. Mol. Cell Biol. 34, 16–29. https://doi.org/10.1128/MCB.00578-13 (2014).
Trivedi, R. et al. Kaempferol has osteogenic impact in ovariectomized grownup Sprague–Dawley rats. Mol. Cell Endocrinol. 289, 85–93. https://doi.org/10.1016/j.mce.2008.02.027 (2008).
Simbula, G. et al. Elevated ROS technology and p53 activation in alpha-lipoic acid-induced apoptosis of hepatoma cells. Apoptosis 12, 113–123. https://doi.org/10.1007/s10495-006-0487-9 (2007).
Kluck, R. M., Bossy-Wetzel, E., Inexperienced, D. R. & Newmeyer, D. D. The discharge of cytochrome c from mitochondria: A main website for Bcl-2 regulation of apoptosis. Science 275, 1132–1136. https://doi.org/10.1126/science.275.5303.1132 (1997).
van der Reest, J., Lilla, S., Zheng, L., Zanivan, S. & Gottlieb, E. Proteome-wide evaluation of cysteine oxidation reveals metabolic sensitivity to redox stress. Nat. Commun. 9, 1581. https://doi.org/10.1038/s41467-018-04003-3 (2018).
Aruoma, O. I., Halliwell, B., Hoey, B. M. & Butler, J. The antioxidant motion of N-acetylcysteine: its response with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic. Biol. Med. 6, 593–597. https://doi.org/10.1016/0891-5849(89)90066-x (1989).
Han, Y. H. & Park, W. H. The results of MAPK inhibitors on a proteasome inhibitor, MG132-induced HeLa cell loss of life in relation to reactive oxygen species and glutathione. Toxicol. Lett. 192, 134–140. https://doi.org/10.1016/j.toxlet.2009.10.015 (2010).
Dongre, A. & Weinberg, R. A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for most cancers. Nat. Rev. Mol. Cell Biol. 20, 69–84. https://doi.org/10.1038/s41580-018-0080-4 (2019).
Xie, Y. et al. miR-196b-5p regulates osteoblast and osteoclast differentiation and bone homeostasis by focusing on SEMA3A. J. Bone Miner. Res. https://doi.org/10.1002/jbmr.4834 (2023).
Henry, M. D. et al. Spiculated periosteal response induced by intraosseous injection of 22Rv1 prostate most cancers cells resembles subset of bone metastases in prostate most cancers sufferers. Prostate 65, 347–354. https://doi.org/10.1002/professionals.20300 (2005).
Kim, H. J. et al. Antioxidant alpha-lipoic acid inhibits osteoclast differentiation by lowering nuclear factor-kappaB DNA binding and prevents in vivo bone resorption induced by receptor activator of nuclear factor-kappaB ligand and tumor necrosis factor-alpha. Free Radic. Biol. Med. 40, 1483–1493. https://doi.org/10.1016/j.freeradbiomed.2005.10.066 (2006).
Dorsam, B. & Fahrer, J. The disulfide compound alpha-lipoic acid and its derivatives: A novel class of anti-cancer brokers focusing on mitochondria. Most cancers Lett. 371, 12–19. https://doi.org/10.1016/j.canlet.2015.11.019 (2016).
Farhat, D. et al. Lipoic acid-induced oxidative stress abrogates IGF-1R maturation by inhibiting the CREB/furin axis in breast most cancers cell strains. Oncogene 39, 3604–3610. https://doi.org/10.1038/s41388-020-1211-x (2020).
Tibullo, D. et al. Biochemical and medical relevance of alpha lipoic acid: antioxidant and anti inflammatory exercise, molecular pathways and therapeutic potential. Inflamm. Res. 66, 947–959. https://doi.org/10.1007/s00011-017-1079-6 (2017).
Damaschke, N. A., Yang, B., Bhusari, S., Svaren, J. P. & Jarrard, D. F. Epigenetic susceptibility elements for prostate most cancers with growing old. Prostate 73, 1721–1730. https://doi.org/10.1002/professionals.22716 (2013).
D’Arcy, M. S. Cell loss of life: A assessment of the foremost types of apoptosis, necrosis and autophagy. Cell Biol. Int. 43, 582–592. https://doi.org/10.1002/cbin.11137 (2019).
Khan, S. et al. 4-Chloro-orthophenylenediamine alters DNA integrity and impacts cell survival: Inferences from a computational, biophysical/biochemical, microscopic and cell-based research. J. Biomol. Struct. Dyn. 40, 14176–14187. https://doi.org/10.1080/07391102.2021.2001376 (2022).
Moloney, J. N. & Cotter, T. G. ROS signalling within the biology of most cancers. Semin. Cell Dev. Biol. 80, 50–64. https://doi.org/10.1016/j.semcdb.2017.05.023 (2018).
Sabharwal, S. S. & Schumacker, P. T. Mitochondrial ROS in most cancers: Initiators, amplifiers or an Achilles’ heel?. Nat. Rev. Most cancers 14, 709–721. https://doi.org/10.1038/nrc3803 (2014).
Dozio, E. et al. The pure antioxidant alpha-lipoic acid induces p27(Kip1)-dependent cell cycle arrest and apoptosis in MCF-7 human breast most cancers cells. Eur. J. Pharmacol. 641, 29–34. https://doi.org/10.1016/j.ejphar.2010.05.009 (2010).
Farhat, D. et al. Lipoic acid decreases breast most cancers cell proliferation by inhibiting IGF-1R by way of furin downregulation. Br. J. Most cancers 122, 885–894. https://doi.org/10.1038/s41416-020-0729-6 (2020).
Farhat, D. & Lincet, H. Lipoic acid a multi-level molecular inhibitor of tumorigenesis. Biochim. Biophys. Acta Rev. Most cancers 1873, 188317. https://doi.org/10.1016/j.bbcan.2019.188317 (2020).
Tseng, J. C. et al. CAPE suppresses migration and invasion of prostate most cancers cells by way of activation of non-canonical Wnt signaling. Oncotarget 7, 38010–38024. https://doi.org/10.18632/oncotarget.9380 (2016).
Reczek, C. R. et al. A CRISPR display identifies a pathway required for paraquat-induced cell loss of life. Nat. Chem. Biol. 13, 1274–1279. https://doi.org/10.1038/nchembio.2499 (2017).
Lu, H. et al. Chemotherapy triggers HIF-1-dependent glutathione synthesis and copper chelation that induces the breast most cancers stem cell phenotype. Proc. Natl. Acad. Sci. USA 112, E4600-4609. https://doi.org/10.1073/pnas.1513433112 (2015).
Semenza, G. L. HIF-1 and mechanisms of hypoxia sensing. Curr. Opin. Cell Biol. 13, 167–171. https://doi.org/10.1016/s0955-0674(00)00194-0 (2001).
Semenza, G. L. Hypoxia-inducible elements in physiology and medication. Cell 148, 399–408. https://doi.org/10.1016/j.cell.2012.01.021 (2012).
Soengas, M. S. et al. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284, 156–159. https://doi.org/10.1126/science.284.5411.156 (1999).
Madan, E. et al. HIF-transcribed p53 chaperones HIF-1alpha. Nucleic Acids Res. 47, 10212–10234. https://doi.org/10.1093/nar/gkz766 (2019).
Ray, R. et al. BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell loss of life impartial of a Bcl-2 homology 3 (BH3) area at each mitochondrial and nonmitochondrial websites. J. Biol. Chem. 275, 1439–1448. https://doi.org/10.1074/jbc.275.2.1439 (2000).
Sottnik, J. L. & Keller, E. T. Understanding and focusing on osteoclastic exercise in prostate most cancers bone metastases. Curr. Mol. Med. 13, 626–639. https://doi.org/10.2174/1566524011313040012 (2013).
Xiao, Y. et al. Dyslipidemic high-fat eating regimen impacts adversely bone metabolism in mice related to impaired antioxidant capability. Diet 27, 214–220. https://doi.org/10.1016/j.nut.2009.11.012 (2011).
Xiao, Y., Cui, J., Shi, Y. & Le, G. Lipoic acid will increase the expression of genes concerned in bone formation in mice fed a high-fat eating regimen. Nutr. Res. 31, 309–317. https://doi.org/10.1016/j.nutres.2011.03.013 (2011).
Ignatoski, Ok. M. et al. Change in markers of bone metabolism with chemotherapy for superior prostate most cancers: Interleukin-6 response is a possible early indicator of response to remedy. J. Interferon Cytokine Res. 29, 105–112. https://doi.org/10.1089/jir.2008.0024 (2009).
Roato, I. et al. Osteoclasts are energetic in bone forming metastases of prostate most cancers sufferers. PLoS ONE 3, e3627. https://doi.org/10.1371/journal.pone.0003627 (2008).
Stegen, S. et al. HIF-1alpha promotes glutamine-mediated redox homeostasis and glycogen-dependent bioenergetics to help put up implantation bone cell survival. Cell Metab. 23, 265–279. https://doi.org/10.1016/j.cmet.2016.01.002 (2016).
Wu, Q. et al. JNK signaling in most cancers cell survival. Med. Res. Rev. 39, 2082–2104. https://doi.org/10.1002/med.21574 (2019).

